Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Psychoneuroendocrinology ; 160: 106683, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086320

RESUMO

Mitochondria within the adrenal cortex play a key role in synthesizing steroid hormones. The adrenal cortex is organized in three functionally specialized zones (glomerulosa, fasciculata, and reticularis) that produce different classes of steroid hormones in response to various stimuli, including psychosocial stress. Given that the functions and morphology of mitochondria are dynamically related and respond to stress, we applied transmission electron microscopy (TEM) to examine potential differences in mitochondrial morphology under basal and chronic psychosocial stress conditions. We used the chronic subordinate colony housing (CSC) paradigm, a murine model of chronic psychosocial stress. Our findings quantitatively define how mitochondrial morphology differs among each of the three adrenal cortex zones under basal conditions, and show that chronic psychosocial stress mainly affected mitochondria in the zona glomerulosa, shifting their morphology towards the more typical glucocorticoid-producing zona fasciculata mitochondrial phenotype. Analysis of adrenocortical lipid droplets that provide cholesterol for steroidogenesis showed that chronic psychosocial stress altered lipid droplet diameter, without affecting droplet number or inter-organellar mitochondria-lipid droplet interactions. Together, our findings support the hypothesis that each adrenal cortex layer is characterized by morphologically distinct mitochondria and that this adrenal zone-specific mitochondrial morphology is sensitive to environmental stimuli, including chronic psychosocial stressors. Further research is needed to define the role of these stress-induced changes in mitochondrial morphology, particularly in the zona glomerulosa, on stress resilience and related behaviors.


Assuntos
Córtex Suprarrenal , Camundongos , Animais , Córtex Suprarrenal/metabolismo , Corticosteroides/metabolismo , Mitocôndrias , Colesterol/metabolismo , Estresse Psicológico
4.
Int J Endocrinol ; 2021: 5527973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335746

RESUMO

In men, 70% of circulating testosterone binds with high affinity to plasma sex hormone binding globulin (SHBG), which determines its bioavailability in their target cells. In recent years, a growing body of evidence has shown that circulating SHBG not only is a passive carrier for steroid hormones but also actively regulates testosterone signaling through putative plasma membrane receptors and by local expression of androgen-binding proteins apparently to reach local elevated testosterone concentrations in specific androgen target tissues. Circulating SHBG levels are influenced by metabolic and hormonal factors, and they are reduced in obesity and insulin resistance, suggesting that SHBG may have a broader clinical utility in assessing the risk for cardiovascular diseases. Importantly, plasma SHBG levels are strongly correlated with testosterone concentrations, and in men, low testosterone levels are associated with an adverse cardiometabolic profile. Although obesity and insulin resistance are associated with an increased incidence of cardiovascular disease, whether they lead to abnormal expression of circulating SHBG or its interaction with androgen signaling remains to be elucidated. SHBG is produced mainly in the liver, but it can also be expressed in several tissues including the brain, fat tissue, and myocardium. Expression of SHBG is controlled by peroxisome proliferator-activated receptor γ (PPARγ) and AMP-activated protein kinase (AMPK). AMPK/PPAR interaction is critical to regulate hepatocyte nuclear factor-4 (HNF4), a prerequisite for SHBG upregulation. In cardiomyocytes, testosterone activates AMPK and PPARs. Therefore, the description of local expression of cardiac SHBG and its circulating levels may shed new light to explain physiological and adverse cardiometabolic roles of androgens in different tissues. According to emerging clinical evidence, here, we will discuss the potential mechanisms with cardioprotective effects and SHBG levels to be used as an early metabolic and cardiovascular biomarker in men.

5.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806797

RESUMO

Among multiple mechanisms, low-grade inflammation is critical for the development of insulin resistance as a feature of type 2 diabetes. The nucleotide-binding oligomerization domain-like receptor family (NOD-like) pyrin domain containing 3 (NLRP3) inflammasome has been linked to the development of insulin resistance in various tissues; however, its role in the development of insulin resistance in the skeletal muscle has not been explored in depth. Currently, there is limited evidence that supports the pathological role of NLRP3 inflammasome activation in glucose handling in the skeletal muscle of obese individuals. Here, we have centered our focus on insulin signaling in skeletal muscle, which is the main site of postprandial glucose disposal in humans. We discuss the current evidence showing that the NLRP3 inflammasome disturbs glucose homeostasis. We also review how NLRP3-associated interleukin and its gasdermin D-mediated efflux could affect insulin-dependent intracellular pathways. Finally, we address pharmacological NLRP3 inhibitors that may have a therapeutical use in obesity-related metabolic alterations.


Assuntos
Inflamassomos/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Animais , Transporte Biológico , Doença Crônica , Glucose/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-1beta/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/patologia , Obesidade/tratamento farmacológico , Obesidade/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
6.
Biol Res ; 54(1): 3, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546773

RESUMO

BACKGROUND: Testosterone regulates nutrient and energy balance to maintain protein synthesis and metabolism in cardiomyocytes, but supraphysiological concentrations induce cardiac hypertrophy. Previously, we determined that testosterone increased glucose uptake-via AMP-activated protein kinase (AMPK)-after acute treatment in cardiomyocytes. However, whether elevated glucose uptake is involved in long-term changes of glucose metabolism or is required during cardiomyocyte growth remained unknown. In this study, we hypothesized that glucose uptake and glycolysis increase in testosterone-treated cardiomyocytes through AMPK and androgen receptor (AR). METHODS: Cultured cardiomyocytes were stimulated with 100 nM testosterone for 24 h, and hypertrophy was verified by increased cell size and mRNA levels of ß-myosin heavy chain (ß-mhc). Glucose uptake was assessed by 2-NBDG. Glycolysis and glycolytic capacity were determined by measuring extracellular acidification rate (ECAR). RESULTS: Testosterone induced cardiomyocyte hypertrophy that was accompanied by increased glucose uptake, glycolysis enhancement and upregulated mRNA expression of hexokinase 2. In addition, testosterone increased AMPK phosphorylation (Thr172), while inhibition of both AMPK and AR blocked glycolysis and cardiomyocyte hypertrophy induced by testosterone. Moreover, testosterone supplementation in adult male rats by 5 weeks induced cardiac hypertrophy and upregulated ß-mhc, Hk2 and Pfk2 mRNA levels. CONCLUSION: These results indicate that testosterone stimulates glucose metabolism by activation of AMPK and AR signaling which are critical to induce cardiomyocyte hypertrophy.


Assuntos
Proteínas Quinases Ativadas por AMP , Glucose/metabolismo , Miócitos Cardíacos , Receptores Androgênicos/metabolismo , Testosterona/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Hipertrofia , Masculino , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Transdução de Sinais
7.
Biol. Res ; 54: 3-3, 2021. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1505792

RESUMO

BACKGROUND: Testosterone regulates nutrient and energy balance to maintain protein synthesis and metabolism in cardiomyocytes, but supraphysiological concentrations induce cardiac hypertrophy. Previously, we determined that testosterone increased glucose uptake­via AMP-activated protein kinase (AMPK)­after acute treatment in cardiomyocytes. However, whether elevated glucose uptake is involved in long-term changes of glucose metabolism or is required during cardiomyocyte growth remained unknown. In this study, we hypothesized that glucose uptake and glycolysis increase in testosterone-treated cardiomyocytes through AMPK and androgen receptor (AR). METHODS: Cultured cardiomyocytes were stimulated with 100 nM testosterone for 24 h, and hypertrophy was verified by increased cell size and mRNA levels of ß-myosin heavy chain (ß-mhc). Glucose uptake was assessed by 2-NBDG. Glycolysis and glycolytic capacity were determined by measuring extracellular acidification rate (ECAR). RESULTS: Testosterone induced cardiomyocyte hypertrophy that was accompanied by increased glucose uptake, glycolysis enhancement and upregulated mRNA expression of hexokinase 2. In addition, testosterone increased AMPK phosphorylation (Thr172), while inhibition of both AMPK and AR blocked glycolysis and cardiomyocyte hypertrophy induced by testosterone. Moreover, testosterone supplementation in adult male rats by 5 weeks induced cardiac hypertrophy and upregulated ß-mhc, Hk2 and Pfk2 mRNA levels. CONCLUSION: These results indicate that testosterone stimulates glucose metabolism by activation of AMPK and AR signaling which are critical to induce cardiomyocyte hypertrophy.


Assuntos
Animais , Masculino , Ratos , Testosterona/farmacologia , Receptores Androgênicos/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Transdução de Sinais , Células Cultivadas , Hipertrofia , Miocárdio/patologia
8.
PLoS One ; 15(11): e0242443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33216776

RESUMO

Idiopathic Inflammatory Myopathies (IIMs) have been studied within the framework of autoimmune diseases where skeletal muscle appears to have a passive role in the illness. However, persiting weakness even after resolving inflammation raises questions about the role that skeletal muscle plays by itself in these diseases. "Non-immune mediated" hypotheses have arisen to consider inner skeletal muscle cell processes as trigger factors in the clinical manifestations of IIMs. Alterations in oxidative phosphorylation, ATP production, calcium handling, autophagy, endoplasmic reticulum stress, among others, have been proposed as alternative cellular pathophysiological mechanisms. In this study, we used skeletal muscle-derived cells, from healthy controls and IIM patients to determine mitochondrial function and mitochondrial ability to adapt to a metabolic stress when deprived of glucose. We hypothesized that mitochondria would be dysfunctional in IIM samples, which was partially true in normal glucose rich growing medium as determined by oxygen consumption rate. However, in the glucose-free and galactose supplemented condition, a medium that forced mitochondria to function, IIM cells increased their respiration, reaching values matching normal derived cells. Unexpectedly, cell death significantly increased in IIM cells under this condition. Our findings show that mitochondria in IIM is functional and the decrease respiration observed is part of an adaptative response to improve survival. The increased metabolic function obtained after forcing IIM cells to rely on mitochondrial synthesized ATP is detrimental to the cell's viability. Thus, therapeutic interventions that activate mitochondria, could be detrimental in IIM cell physiology, and must be avoided in patients with IIM.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/patologia , Miosite/patologia , Trifosfato de Adenosina/análise , Idoso , Autoanticorpos/imunologia , Doenças Autoimunes/patologia , Células Cultivadas , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Pessoa de Meia-Idade , Fosforilação Oxidativa , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-32499759

RESUMO

The prevalence of cardiovascular mortality is higher in men than in age-matched premenopausal women. Gender differences are linked to circulating sex-related steroid hormone levels and their cardio-specific actions, which are critical factors involved in the prevalence and features of age-associated cardiovascular disease. In women, estrogens have been described as cardioprotective agents, while in men, testosterone is the main sex steroid hormone. The effects of testosterone as a metabolic regulator and cardioprotective agent in aging men are poorly understood. With advancing age, testosterone levels gradually decrease in men, an effect associated with increasing fat mass, decrease in lean body mass, dyslipidemia, insulin resistance and adjustment in energy substrate metabolism. Aging is associated with a decline in metabolism, characterized by modifications in cardiac function, excitation-contraction coupling, and lower efficacy to generate energy. Testosterone deficiency -as found in elderly men- rapidly becomes an epidemic condition, associated with prominent cardiometabolic disorders. Therefore, it is highly probable that senior men showing low testosterone levels will display symptoms of androgen deficiency, presenting an unfavorable metabolic profile and increased cardiovascular risk. Moreover, recent reports establish that testosterone replacement improves cardiomyocyte bioenergetics, increases glucose metabolism and reduces insulin resistance in elderly men. Thus, testosterone-related metabolic signaling and gene expression may constitute relevant therapeutic target for preventing, or treating, age- and gender-related cardiometabolic diseases in men. Here, we will discuss the impact of current evidence showing how cardiac metabolism is regulated by androgen levels in aging men.


Assuntos
Envelhecimento/patologia , Androgênios/metabolismo , Doenças Cardiovasculares/patologia , Idoso , Androgênios/administração & dosagem , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Humanos , Masculino
10.
Mitochondrion ; 49: 73-82, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31310854

RESUMO

Cytosolic calcium (cCa2+) entry into mitochondria is facilitated by the mitochondrial membrane potential (ΔΨm), an electrochemical gradient generated by the electron transport chain (ETC). Is has been assumed that as long as mutations that affect the ETC do not affect the ΔΨm, the mitochondrial Ca2+ (mCa2+) homeostasis remains normal. We show that knockdown of NDUFAF3 and SDHB reduce ETC activity altering mCa2+ efflux and influx rates while ΔΨm remains intact. Shifting the equilibrium toward lower [Ca2+]m accumulation renders cells resistant to death. Our findings reveal an unexpected relationship between complex I and II with the mCa2+ homeostasis independent of ΔΨm.


Assuntos
Cálcio/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Homeostase , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Succinato Desidrogenase/metabolismo , Complexo I de Transporte de Elétrons/genética , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Succinato Desidrogenase/genética
11.
Psychoneuroendocrinology ; 106: 268-276, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31029929

RESUMO

Intrinsic biological mechanisms transduce psychological stress into physiological adaptation that requires energy, but the role of mitochondria and mitochondrial DNA (mtDNA) in this process has not been defined in humans. Here, we show that similar to physical injury, exposure to psychological stress increases serum circulating cell-free mtDNA (ccf-mtDNA) levels. Healthy midlife adults exposed on two separate occasions to a brief psychological challenge exhibited a 2-3-fold increase in ccf-mtDNA, with no change in ccf-nuclear DNA levels, establishing the magnitude and specificity for ccf-mtDNA reactivity. In cell-based studies, we show that glucocorticoid signaling - a consequence of psychological stress in humans - is sufficient to induce mtDNA extrusion in a time frame consistent with stress-induced ccf-mtDNA increase. Collectively, these findings provide evidence that acute psychological stress induces ccf-mtDNA and implicate neuroendocrine signaling as a potential trigger for ccf-mtDNA release. Further controlled work is needed to confirm that observed increases in ccf-mtDNA result from stress exposure and to determine the functional significance of this effect.


Assuntos
DNA Mitocondrial/genética , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Adulto , Ácidos Nucleicos Livres/genética , DNA Mitocondrial/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Psicológico/sangue
12.
PLoS One ; 11(12): e0168255, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27977752

RESUMO

Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT) is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3ß (GSK-3ß) is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3ß signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3ß inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc) in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3ß activity as determined by increased GSK-3ß phosphorylation at Ser9 and ß-catenin protein accumulation, and also by reduction in ß-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3ß inhibition with 1-azakenpaullone or a GSK-3ß-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3ß mutant (GSK-3ßS9A) inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis). Calcineurin-NFAT inhibition abolished and GSK-3ß inhibition promoted the hypertrophy stimulated by testosterone. GSK-3ß activation by GSK-3ßS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results suggest that cardiac myocyte hypertrophy induced by testosterone involves a cooperative mechanism that links androgen signaling with the recruitment of NFAT through calcineurin activation and GSK-3ß inhibition.


Assuntos
Cardiomegalia/induzido quimicamente , Glicogênio Sintase Quinase 3 beta/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/fisiologia , Testosterona/efeitos adversos , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Fatores de Transcrição NFATC/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-25566189

RESUMO

Sarcopenia, the age-related loss of skeletal muscle mass and function, is becoming more prevalent as the lifespan continues to increase in most populations. As sarcopenia is highly disabling, being associated with increased risk of dependence, falls, fractures, weakness, disability, and death, development of approaches to its prevention and treatment are required. Androgens are the main physiologic anabolic steroid hormones and normal testosterone levels are necessary for a range of developmental and biological processes, including maintenance of muscle mass. Testosterone concentrations decline as age increase, suggesting that low plasma testosterone levels can cause or accelerate muscle- and age-related diseases, as sarcopenia. Currently, there is increasing interest on the anabolic properties of testosterone for therapeutic use in muscle diseases including sarcopenia. However, the pathophysiological mechanisms underlying this muscle syndrome and its relationship with plasma level of androgens are not completely understood. This review discusses the recent findings regarding sarcopenia, the intrinsic, and extrinsic mechanisms involved in the onset and progression of this disease and the treatment approaches that have been developed based on testosterone deficiency and their implications.

14.
Med Sci Sports Exerc ; 45(9): 1712-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23470307

RESUMO

PURPOSE: The anabolic hormone testosterone induces muscle hypertrophy, but the intracellular mechanisms involved are poorly known. We addressed the question whether signal transduction pathways other than the androgen receptor (AR) are necessary to elicit hypertrophy in skeletal muscle myotubes. METHODS: Cultured rat skeletal muscle myotubes were preincubated with inhibitors for ERK1/2 (PD98059), PI3K/Akt (LY294002 and Akt inhibitor VIII) or mTOR/S6K1 (rapamycin), and then stimulated with 100 nM testosterone. The expression of α-actin and the phosphorylation levels of ERK1/2, Akt and S6K1 (a downstream target for mTOR) were measured by Western blot. mRNA levels were evaluated by real time RT-PCR. Myotube size and sarcomerization were determined by confocal microscopy. Inhibition of AR was assessed by bicalutamide. RESULTS: Testosterone-induced myotube hypertrophy was assessed as increased myotube cross-sectional area (CSA) and increased α-actin mRNA and α-actin protein levels, with no changes in mRNA expression of atrogenes (MAFbx and MuRF-1). Morphological development of myotube sarcomeres was evident in testosterone-stimulated myotubes. Known hypertrophy signaling pathways were studied at short times: ERK1/2 and Akt showed an increase in phosphorylation status after testosterone stimulus at 5 and 15 min, respectively. S6K1 was phosphorylated at 60 min. This response was abolished by PI3K/Akt and mTOR inhibition but not by ERK1/2 inhibition. Similarly, the CSA increase at 12 h was abolished by inhibitors of the PI3K/Akt pathway as well as by AR inhibition. CONCLUSIONS: These results suggest a crosstalk between pathways involving fast intracellular signaling and the AR to explain testosterone-induced skeletal muscle hypertrophy.


Assuntos
Androgênios/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Doenças Musculares/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Testosterona/metabolismo , Actinas/genética , Actinas/metabolismo , Androgênios/farmacologia , Animais , Células Cultivadas , Hipertrofia/induzido quimicamente , Hipertrofia/metabolismo , Hipertrofia/patologia , Sistema de Sinalização das MAP Quinases , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Doenças Musculares/induzido quimicamente , Doenças Musculares/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Sarcômeros/efeitos dos fármacos , Testosterona/farmacologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética
15.
Apunts, Med. esport ; 47(174): 65-72, abr.-jun. 2012. tab, graf
Artigo em Inglês | IBECS | ID: ibc-101250

RESUMO

Siete jóvenes sanos y en buena condición física realizaron dos pruebas de tolerancia a hipoxia a una altitud simulada de 3.000 m. La primera fue en cámara hipobárica, mientras que la segunda se efectuó en una tienda hipóxica. Se registraron varios parámetros cardiorrespiratorios y la variabilidad de la frecuencia cardiaca. En comparación con las condiciones de normoxia, se observó un decremento significativo del 6% al 8% en la saturación de oxígeno arterial (SpO2) en reposo en ambas condiciones de hipoxia. El ejercicio desencadenó descensos de un 10% en SpO2 pese a un incremento del 27% del volumen minuto ventilatorio. Tanto los componentes de baja (LF) como alta frecuencia (HF) de la variabilidad del ritmo cardiaco cambiaron significativamente en hipoxia hipobárica (LF: 49,1, HF: 50,6, LF/HF: 1,96) respecto a normoxia (LF: 37,1, HF: 62,9, LF/HF: 1,27). Estos cambios no se apreciaron en condiciones de hipoxia normobárica, lo cual apoya la hipótesis de que la hipoxia hipobárica y normobárica no suponen igual estímulo para los sistemas respiratorio y cardiovascular. Se ha observado una correlación entre la modulación vagal y simpática en normoxia y la SpO2 durante ejercicio en cámara hipobárica. Los sujetos con mayor modulación simpática (LF%) en normoxia presentan mayor SpO2 en ejercicio en la cámara (r=0,808, p<0,05) y los individuos con mayor modulación vagal (HF%) en normoxia tienden a SpO2 más bajas en ejercicio en hipobaria (r=−0,636, p=0,125). Surge la posibilidad de utilizar esta asociación como herramienta predictiva de la capacidad individual de aclimatación a la altura(AU)


Seven healthy young men were submitted twice to a hypoxia tolerance test at a simulated altitude (3000m). Their first acute exposure was in a hypobaric chamber; and the second, in a hypoxic tent. Cardiorespiratory parameters and heart rate variability measurements were obtained under each hypoxic condition. A significant decrease of 6% to 8% compared to normal oxygen conditions was observed in arterial oxygen saturation (SpO2) in both hypoxic conditions at rest; whereas exercise led to decreases of 10% in SpO2 despite an increase of 27% in respiratory minute volume. The low frequency (LF) and high frequency (HF) components of heart rate variability significantly changed from normoxia (LF: 37.1, HF: 62.9, LF/HF: 1.27) to hypobaric hypoxia (HH) (LF: 49.1, HF: 50.6, LF/HF: 1.96). However, these changes were not observed under normobaric hypoxia. Thus, heart rate variability behaved differently in the two hypoxic conditions, supporting the hypothesis that normobaric hypoxia and hypobaric hypoxia are not equal stimuli to the cardiovascular and respiratory systems. A correlation was found between sympathetic and vagal modulations in normoxia and SpO2 at exercise under hypobaric hypoxia (HH). Individuals with higher sympathetic modulation (LF%) in normoxia had higher SpO2 at exercise under HH (r=0.808, P<0.05) and individuals with higher vagal modulation (HF%) in normoxia showed a trend to lower SpO2 in exercise under HH (r=−0.636, P=0.125). This opens up the possibility of using this correlation as a tool for predicting the individual capacity to altitude acclimatization(AU)


Assuntos
Humanos , Fenômenos Fisiológicos Respiratórios , Fenômenos Fisiológicos Cardiovasculares , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Frequência Cardíaca/fisiologia , Consumo de Oxigênio/fisiologia
16.
Wilderness Environ Med ; 22(3): 250-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21962052

RESUMO

OBJECTIVE: The aim of this study was to test the hypothesis that administration of low-flow oxygen will improve physical performance in subjects unacclimatized to altitude. We evaluated the effects of oxygen supplementation on functional capacity and acute mountain sickness (AMS) symptoms in young, healthy male and female subjects who performed a 2-km fast walk test following rapid ascent to the Chajnantor plateau (5050 m above sea level) in Northern Chile. METHODS: The participants were randomly distributed into 2 groups according to oxygen supplementation levels: 1 or 3 L O(2) · min(-1). Within each group, males and females were evaluated separately. A preliminary walk test was carried out at sea level on a 100-m long, flat track with 10 U-turns. For the first walk at altitude, subjects carried the supplementary oxygen system but did not breathe the oxygen. Subjects received oxygen through a facemask the following day during the second test. The nights prior to altitude tests were spent at 2400 m in San Pedro de Atacama. RESULTS: Supplementary oxygen administration during a 2-km walk test significantly improved walking times at 5050 m. We also observed a significant improvement in AMS symptoms. As expected, however, performance was poorer at altitude compared to test values at sea level, despite supplementary oxygen administration. CONCLUSIONS: Our findings demonstrate the beneficial effects of supplementary oxygen administration on physical capacity, reducing the incidence of AMS and, thus, improving health and safety conditions for high altitude workers following rapid ascent, when adequate acclimatization is not possible.


Assuntos
Aclimatação , Doença da Altitude/terapia , Oxigênio/administração & dosagem , Feminino , Humanos , Masculino , Montanhismo , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...